
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1320
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Prioritizing and Optimizing the Test Cases during
Regression Testing

Neha Gupta, Neha Yadav, Aruna Yadav

Abstract— Software testing is one of important phase of the software development life cycle. The software is tested using the test
cases. Test cases form the building blocks of the testing process since they get into the core of the source code to find out the faulty
code. Test cases are generated by considering the set of input values and their expected outputs. This expected output is again compared
with the output after feeding the same values to the software under test. If the expected output is same then the software is working right
else there is some problem. After testing the entire software if any change is made to the software the system is tested again which is
known as regression testing. To reduce the bulk during regression testing tester need to prioritize and optimize the test cases to yield
quick and appropriate results. The paper proposes an approach to optimize the test cases and providing efficient output as compared to
the previous approach

Index Terms— Regression testing, Test case prioritization, Optimization ,minimization of test cases,software testing,retesting

 —————————— ——————————

1 INTRODUCTION THIS covers the idea of the test case optimization during
the Regression Testing. Software testing is one of the very im-
portant phases of the software development Life cycle. The
software is tested on all the requirements being given to them
as per the priority by the customers. The software is tested
using the test cases. Test cases form the building blocks of the
testing process since they get into the core of the source code
to find out the faulty code. Test cases are generated by consid-
ering the set of input values and their expected outputs. This
expected output is again compared with the output after feed-
ing the same values to the software under test. If the expected
output is same then the software is working right else there is
some problem.
After testing the entire software if any change is made to the
software the system is tested again which is known as regres-
sion testing. It tests the software with the same test cases to
check whether the change affects the requirements. Regression
testing is considered to be much costlier than any other testing
performed because once the software goes under a change it
becomes a challenge for the tester to test the entire software
again. To reduce the bulk during regression testing tester need
to prioritize and optimize the test cases to yield quick and ap-
propriate results. Regression testing is the process of exe-
cuting the previous test cases on the changed program to
see whether the changes are adversely affecting the func-
tion performed by the program or not Regression Testing is
performed to locate the errors, to preserve the quality of the
software and to increase the confidence in the correctness of
the modified program.

————————————————

• Neha Gupta is currently pursuing Masters degree program in Computer

Science Engineering in Jamia Hamdard ,Hamdard UniversityNew Delhi,India
and affiliated to KIET, Ghaziabad.

• Aruna Yadav and Neha Yadav are Asistant Professor in Department of Com-
puter Science & Engineering, KIET Ghaziabad,India.They have 5years of expe-

rience in teachingand research and published various research papers .
aruna.yadav21@gmail.com nehayadav1508@gmail.com

.

2 RELATED WORK
Gregg R.et. al. [1] describe several techniques for using test exe-
cution information to prioritize test cases for regression testing,
including: 1) techniques that order test cases based on their total
coverage of code components, 2) techniques that order test cases
based on their coverage of code components not previously covered,
and 3) techniques that order test cases based on their estimated abil-
ity to reveal faults in the code components that they cover.. The data
also shows, however, that considerable room remains for improve-
ment.
Eric W. et al. [2] describe regression testing is usually performed by
running some, or all, of the test cases created to test modifications in
previous versions of the software. Many techniques have been re-
ported on how to select regression tests so that the number of test
cases does not grow too large as the software evolves.
Yoo S. et.al.[3] discuss test case prioritization seeks to order test
cases in such a way that early fault detection is maximized. This
paper surveys each area of minimization, selection and prioritization
technique and discusses open problems and potential directions for
future research. Xuan L.et.al. [4] conduct survey of current research
on regression testing and current practice in industry and also try to
find out whether there are gaps between them. Gaurav D et.al.[5]
presented the various types of regression testing techniques their
classifications presented by various researchers , explaining selective
and prioritizing test cases for regression testing in detail.
Elbaum E. et.al.[6], this analysis shows that test suite granularity
significantly affects several cost- benefits factors for the methodolo-
gies considered, while test input grouping has limited effects. Fur-
ther, the results expose essential tradeoffs affecting the relationship
between test suite design and regression testing cost-effectiveness,
with several implications for practice.

IJSER

http://www.ijser.org/
mailto:aruna.yadav21@gmail.com
mailto:nehayadav1508@gmail.com

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1321
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Kapfhammer M. et.al.[7] advocates a way forward involving a mu-
tually beneficial increased sharing of the inputs, outputs, and proce-
dures used in experiments. Mark H et.al.[8] presents several exam-
ples of costs and values that could be incorporated into such a
Multi Objective Regression Test Optimization (MORTO) ap-
proach. Lijun H et.al.[9] that their techniques can achieve signifi-
cantly higher rates of fault detection than existing techniques. Hsu Y.
et.al.[10] show how mints can be used to instantiate a number of
different test-suite minimization problems and efficiently find an
optimal solution for such problems using different solvers.

3 BACKGROUND
TEST CASE PRIORITIZATION
Test case prioritization [1], [2] is a technique of ordering the test
cases according to a particular condition (a “fitness number”). Test
case prioritization defined by Rothermal et al. [1] is as fol-
lows:Given: P, a test suite; PP, the set of permutations of P; f,a func-
tion from PP to the real numbers.
Problem: Find P’ such that
(˅ P” (P” є PP) (P” ≠ P’ [f (P’)> (P”)])
Here, PP is the set of all prioritizations of P and f is defined as a
function which when applied to any of the possible prioritizations
yield a result.Test case prioritization is performed based on some
criterion and it is mandatory since re-execution of the test cases be-
comes challenging. So if few of the test cases are left out then the
most effective test cases are executed.

4 PRIORITIZING AND OPTIMIZING THE TEST
CASES DURING REGRESSION TESTING

4.1 Test Case Creation
The test cases are created for C program by using the line pre-
processor directive i.e., LINE . The preprocessor directive gen-
erates the line number which gets executed when the input values
are provided to the C program. The creation of the test cases can be
explained with the help of the example.
Considering an example which is a C program which can find the
area of the two dimensional figures. It finds the area of the square,
rectangle and triangle. The choice is given to the user as ‘1’ and ‘2’.
Choice ‘1’ finds the area of the square and rectangle and Choice ‘2’
finds the area of different
types of rectangles.
For example if we input the choice as 1 then the sides which the
user can input are ‘a’ and ‘b’ whereas choice ‘2’ needs input as ‘a’,

‘b’ and ‘c’. The output to the program are the area of the two di-
mensional figures and the line of code executed i.e., for choice
‘1’ and ‘a’ and ‘b’ 2 and 8 respectively the output is 16 and the line
of code executed are <12,13, 14, 15, 16, 17, 19, 20, 21>.

4.2 GENERATING THE LINE NUMBERS CHANGED
The program is tested once and the changes are made to
the program. The section 2 compares the old program and
the new program and generates the set of the lines which
are changed. In the example the line numbers generated by
the Section 2 are <13, 14, 15, 19, 26, 28, 33, 34, 36>.

4.3 ALGORITHM FOR PRIORITIZING AND OPTIMIZING
TEST CASES

The most important section of the entire approach is Section 4 in
which test suite is reduced, the test cases covering only the
changed lines are provided and the entire program can tested
using the optimized test cases. The section 4.3 can be explained
on the basis of the Table 4.2.

number : total number of test cases.

length[] : the number of elements in each test case.

test[][] : two dimensional array storing the elements of
each testcase.

Modnum : the number of modified lines in the source code.

mod[] : one dimensional array storing the lines which are
modified.

ncommon[] : number of matching elements between test[][]
and mod[].

common[][] : two dimensional array storing the values of the
line of code matching with the each test case.

Count: counter variable

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1322
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Table 4.1:The variables used in the pseudocode
// First section of the pseudo code:
 Initialization of variables

1. Repeat for i=0 to number of test cases
 a. Repeat for j=0 to number of test cases
 i. Initialize array test cases[i][j] to zero
2. Repeat for i=0 to number of test cases
 a. Repeat for j=0 to number of test cases
 i. Store line numbers of line of source code
 covered by each test case in array common[i][j]
3. Repeat for i=0 to number of modified lines of
 source code
 a. Store line numbers of modified lines of source
 code in array mod[i].
//Second section of the pseudo code:
Comparison between test[][] and mod []
 4. Repeat for all true cases
 a. Repeat for i=0 to number of test cases
 i. Initialize array ncommon[i] to zero
 b. Repeat for j=0 to number of test cases
 i. Repeat for k=0 to modified lines of source code
 If testcase[i][j]=mod[k]
Then Increment common[i] by 1
 common[i][j]=test[i][j]
 Table 4.2: Test cases with the line of code covered
// Third section of the pseudo code:
Elimination of the common test cases
5. Repeat for i=0 to number of test cases
Initialize count to zero
Repeat for j=i+1 to number of test cases
Set count to zero
 If ncommon [i]>ncommon [j] then
 Repeat for k=0 to number of test cases
 Repeat for l=0 to number of test cases
 If common[i][k]=[j][l] and common[i][j]!=0
 Increment count by 1
 If count = common[j] and count to zero then
 Repeat for m=0 to number of test cases
 Set common[i][j] to zero
 Set common[i][j] to zero

// Fourth section of the pseudo code :
Output depicting the priority of test cases
 6. Initialize count to zero
 7. Repeat for i=0 to number of test cases
 a. Initialize count=0
 b.Repeat for j=1 to number of test cases
 i.Initialize count=0
 ii. If ncommon[i]!=0 and ncommon[j]!=0 and i!=j
 Repeat for k=0 to number of test cases
 Repeat for 0 to number of test cases
 If common[i][k]==common[j][l] and common[i][k]!=0)
 Increment count by 1
 iii. If count=ncommon[j] and count!=0
 Repeat for m=0 to number of test cases
 Initialize common[j][m]=0
 Initialize ncommon[j]=0

4.3.1 Initialization of variables

Test
Case
Id

Inputs

Expected
Output

Line of Code Cov-
ered

Choic
e

a b c

T1 1 2 8 16 12, 13, 14, 15, 16,
17, 19, 20, 21

T2 1 4 4 16 12, 13, 14, 15, 16,
17, 18, 21

T3

2

2

4

8

0;
Invalid Trian-
gle

12, 13, 14, 21, 22,
23, 24, 26, 27,
28, 29

T4

2

2

2

2

1.7;
Equilateral
Triangle

12, 13, 14, 21, 22,
23, 24, 25

T5

2

6

6

8

17.8

12, 13, 14, 21, 22,
23, 24, 30, 31,
32

T6 1 2 2 4 12, 13, 14, 15, 16,
17, 19, 20, 21

 T7

2

8

8

6

22.24

12, 13, 14, 21, 22,
23, 24, 30, 31,
32

T8

2

8

6

8

22.24

12, 13, 14, 21, 22,
23, 24, 30, 31,
35, 36

T9

2

6

8

8

22.24

12, 13, 14, 21, 22,
23, 24, 30, 31,
33, 34

T10 1 8 2 16 12, 13, 14, 15, 16,
17, 19, 20, 21

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1323
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 In the first section the program takes the total number of test cases
and the values of line of code covered by the each test case as the
input set and the modified lines of the source code as the second
input.The test cases are stored in the variable ‘number’ and the num-
ber of modified lines in the variable ‘modnum’.The values of the line
of code covered by each test case are stored in the two dimensional
array ‘test [][]’ and the modified lines are stored in the single dimen-
sional array ‘mod []’.The output of the first section initializes two 2
dimensional arrays ‘test [][]’ and‘common[][]’ and a single dimen-
sional array mod[].

4.3.2 Comparison between test [][] and mod []

The second section of the algorithm compares the array mod[] with
the every row of the two dimensional array test[][].The array
‘ncommon []’ stores the number of common elements obtained after
performing the comparison between the mod[] and test[][]. The
common values between the mod[] and each row of the 2 dimen-
sional array are stored in are stored in the two dimensional array
‘common[][]
Test CaseId Common[][] Ncommon[]

T1 13, 14, 15, 19 4

T2 13, 14, 15 3

T3 13, 14, 26, 28 4

T4 13, 14 2

T5 13, 14 2

T6 13, 14, 15, 19 4

T7 13, 14 2

T8 13, 14, 36 3

T9 13, 14, 33, 34 4

T10 13, 14, 15, 19 4

Table 4.3 Output of pseudocode 4.3.2

4.3.3 Elimination of the common test cases
The third section of the algorithm eliminates test cases from the 2
dimensional array common[][] which have the same values.The two
test cases with the same values need not to be executed so eliminat-
ing one can help in minimising the time of the regression testing.The
ncommon[] value with respect to each test case is considered for
identifying the test cases having same number of values.The output
of the section three is such that the 2 dimensional array assigns 0
values to one of the common test case after comparison.

Test Case
 Id

Common[][] Ncom-
mon[]

T1 13, 14, 15, 19 4

T2 13, 14, 15 3

T3 13, 14, 26, 28 4

T4 13, 14 2

T5 0 0

T6 0 0

T7 0 0

T8 13, 14, 36 3

T9 13, 14, 33, 34 4

T10 0 0

Table 4.4 Output of pseudocode 4.3.3

4.3.4 Output: Gives the only required test cases
The fourth section of the algorithm considers that the test case
covering the maximum number of elements is prior to any other test
case.

Test case Id Common[][] Ncommon[]

T1 13, 14, 15, 19 4

T2 0 0

T3 13, 14, 26, 28 4

T4 0 0

T5 0 0

T6 0 0

T7 0 0

T8 13, 14, 36 3

T9 13, 14, 33, 34 4

T10 0 0

Table 4.3 Output of pseudocode 4.3.4

5 RESULTS AND CONCLUSION
The algorithm provides the minimal set of test cases as an output.
These test cases cover the entire test suites. The following examples
are considered to compare both the approaches.The following exam-
ples are tabulated with the input values, output values and the line of
code covered. Each of the examples consists of the set of generated
test cases and their respective outputs. Line of code covered are the
line number executed for each input values. The modified lines are
generated for each of the example by making changes to the original
program and then comparing the line numbers of each program. The
final output of the program or the optimized test cases are shown
after every table.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1324
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

EXAMPLE 1
The example consists of the total 12 test cases.
 Input: The input values provided by the user are month, day, year.
Output: The output of the algorithm is the day of the week.
The Section 2 of the approach generates the lines which were
changed after testing the program once. The modified lines are <6,
28, 36, 44, 50, 61>.

Test
Case Id

Month

Day

Year

Expected
Output

Line of Code Cov-
ered

T1

6

15

1900

Friday

6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16,
17,18, 19

T2 1 15 1900 Monday 46, 47, 48, 53, 54,
55, 56, 57, 61, 91

T3 1 15 2009 Thursday 50, 51, 52, 53, 54,
55, 56, 57, 61, 91

T4 1 15 2009 Thursday 56, 57, 61, 91

T5 2 15 2000 Tuesday 67, 68, 69, 91

T6 4 15 2009 Wednesday 74, 75, 91

T7 7 15 2009 Wednesday 89, 90, 91

T8 6 15 1900 Friday 3, 4, 5, 6, 7, 8, 9, 10,
11, 44

T9

1

15

1900

Monday

15, 16, 17, 18, 26,
37, 38, 39, 43, 44,
45,46, 47, 48, 53,
54, 55

T10 2 15 2000 Tuesday 28, 29, 36, 43, 44

T11

2

30

2009

Invalid
Date

34, 35, 36, 43, 44

T12 2 15 1900 Thursday 13, 14, 15, 16, 17,
18, 26, 27

The output of the algorithm or the minimum number test cases re-
quired to test the entire program are T10, T8, T3.

REFERENCES

[1] Rothermel Gregg, Untch Roland H., Chu Chengyun, Harrold Mary Jean,

2000, Prioritizing Test b Cases For Regression Testing, International Sympo-
sium on Software Testing and Analysis, pp102-112, 2000.

[2] Wong Eric W., Horgan J.R., London Saul, Agrawal Hira, 1997, A Study
of Effective Regression Testing in Practice. IEEE International Sym-
posium on Software Reliability Engineering, pp 264-274, 1997.

[3] Yoo, S., Harman, M., 2007, Regression Testing Minimisation, Selection and
Prioritisation : A Survey, Wiley Interscience, 24 September 2007.

[4] Lin Xuan, Regression Testing in Research and Practice, Computer Science and
Engineering Department University of Nebraska, Lincoln.

[5] Duggal Gaurav, Suri Bharti, 2008, Understanding Regression Testing Tech-
niques, Second Conference on Opportunities and Challenges in Information
Technology, 2008.

[6] Gregg Rothermel, Sebastian Elbaum, Alexey Malishevsk, Praveen
Kallakuri, Xuemei Qiu,2004, On Test Suite Composition and Cost-Effective
Regression Testing, ACM Transactions on Software Engineering and Meth-
odology, vol. 13, issue 3, pp. 277-331, July 2004.

[7] Kapfhammer M. Gregory, 2011, Empirically Evaluating Regression Testing
Techniques: Challenges, Solutions, and a Potential Way Forward, IEEE 4th
International Conference, pp. 99-102, 21-25 March 2011.

[8] Harman Mark, 2011, Making the case for MORTO: Multi objective
regression test optimization, The 1st International Workshop on Regression
Testing, pp. 111–114, 2011.

[9] Mei Lijun, Zhang Zhenyu , Chan W. K., Tse T. H., 2009, Test Case Prioriti-
zation for Regression Testing of Service Oriented Business Applications,
Proceedings of the 18th International Conference on World Wide Web,
ACM Press, New York, 2009.

[10] Hsu Y. Hwo and Orso Alessandro, 2009, MINTS: A General Framework and
Tool for 7Supporting Test-suite Minimization, Proceedings of the 31st
IEEE and ACM SIGSOFT International Conference on Software Engineer-
ing, pp. 419–429, May 2009.

[11] Malhotra Ruchika, Kaur Arvinder, Singh Yogesh, 2010, A Regression
Test Selection and Prioritization Technique, Journal of Information
Processing Systems, vol.6, no.2, June 2010 .

IJSER

http://www.ijser.org/

	1 Introduction
	2 RELATED WORK
	3 BACKGROUND
	4 PRIORITIZING AND OPTIMIZING THE TEST CASES DURING REGRESSION TESTING
	4.1 Test Case Creation
	4.2 GENERATING THE LINE NUMBERS CHANGED
	4.3 ALGORITHM FOR PRIORITIZING AND OPTIMIZING TEST CASES

	5 RESULTS AND CONCLUSION
	References

